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In this work, we present a method for analyzing and
computing the rates of change of eigenvalues with respectA method for analysis and computation of derivatives and extre-

mum points of variable-coefficients differential eigenvalue prob- to differential-eigenvalue-problem parameters as well as
lems is presented. The method utilizes the orthogonality of the computing the extremum points of differential eigenvalue
adjoint eigenfunctions to the homogenous part of the once or more problems. The method is applied to problems from hydro-differentiated problem to derive an analytical expression for the

dynamic stability of boundary layers. Efficient computationrate of change of eigenvalue with respect to a free parameter. The
extremum point can be analyzed and computed by setting and of the rates of change of some quantity with respect to
driving, respectively, the first rate of change of the eigenvalue with parameters is essential in sensitivity analysis and optimiza-
respect to the free parameters to zero. Higher order derivatives can tion studies. While the rates of change of a quantity with
be computed by solving, sequentially, sets of inhomogeneous two-

respect to a parameter can be computed using two-pointpoint boundary value problems. The method is applied to analyze
finite differences, this method has a low order of accuracy.and compute the most amplified inviscid instability wave in two-

dimensional compressible boundary layers and the most amplified Moreover, higher-order-finite-difference approximations
viscous instability wave in three-dimensional incompressible are costly for practical problems both in terms of computer
boundary layers. It is shown analytically that while the most-ampli- and user’s time.fied spatial instability wave in two-dimensional incompressible

In hydrodynamic stability, it is known that the mostboundary layer is two dimensional, the corresponding most ampli-
fied wave in three-dimensional boundary layer is generally oblique. amplified temporal instability wave in two-dimensional in-
It is also shown analytically that the most-amplified disturbance in compressible boundary layers is two dimensional. On the
three-dimensional boundary layer is generally a traveling distur- other hand, the most amplified waves in three-dimensional
bance. Furthermore, it is shown analytically that the inviscid growth

boundary layers are oblique. Furthermore, the extensiverate is an extremum point. Q 1996 Academic Press, Inc.

numerical calculations of Mack [1] revealed that the most
amplified first-mode waves in supersonic two-dimensional
boundary layers are oblique, whereas the most amplified1. INTRODUCTION
second-mode waves in supersonic two-dimensional bound-
ary layers are two dimensional. However, most of theseOrdinary differential eigenvalue problems with variable
findings have no theoretical basis to support them. In thiscoefficients arise in modeling various phenomena in sci-

ence and engineering. In order to understand the nature work, we present a tool for such a theoretical basis by
deriving an analytical condition which characterizes theof such modeled phenomena, it is often desired to analyze

and quantify the interrelationships of the various free pa- extremum growth rate of instability waves. The theoretical
basis for some of the above discussed findings is also pre-rameters that constitute the dispersion relation associated

with the differential eigenvalue problem. The free parame- sented.
In stability studies the maximum disturbance growth rateters in a dispersion relation include the eigenvalue as well

as other free parameters such as material or media proper- over all spanwise wave numbers or frequencies or both
must be considered in order to determine whether a certainties, geometric dimensions or properties, wave characteris-

tics, etc. The extremum values of the eigenvalue over all effect is stabilizing or destabilizing [1, 2]. The maximum
growth rate over all spanwise wavenumbers is also neededvalues of one or more free parameters of the dispersion

relation of a differential eigenvalue problem have special in transition–prediction codes to implement the envelope
method of calculating the amplification factor. In this work,significance in applications. In addition, the rates of change

of eigenvalue with respect to one or more free parameters we also present a method for efficient and robust computa-
tion of the maximum growth rate of instability waves overof the dispersion relation of a differential eigenvalue prob-

lem are significant quantities in optimization procedures. all values of one or more parameters. Although the method
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is applied to hydrodynamic stability, it can be used, in tion conditions. The method presented in this paper is
different than the method of Masad and Malik [3].its general form, to efficiently analyze and compute the

derivatives and extremum points of differential eigen- The present method of analyzing and computing the
derivatives and extremum values of P over all values of civalue problems.
starts by multiplying Eq. (1) by z*T and integrating the
result over the domain of the problem from y 5 a to2. GENERAL ANALYSIS
y 5 b. The result is

We consider a system of first-order homogenous ordi-
nary differential equations expressed as Eb

a
z*T(Dz 2 Gz) dy 5 0. (4)

Dz 5 G(x; P, ci)z, i 5 1, 2, ..., (1)
Integrating by parts and rearranging, we obtain

where D 5 d/dy, P is the eigenvalue, and ci are other free
parameters. Higher powers of P and ci are possible. If

z*TzUb

a

2 Eb

a
(Dz*T 1 z*TG)z dy 5 0.we have n equations, then z is a column vector with n

components and G is a square matrix of order n 3 n with
variable coefficients. The general homogeneous boundary

The adjoint equations [4, 5] are defined by settingconditions are

Dz*T 1 z*TG 5 0,A(P, ci)z(a) 1 B(P, ci)z(b) 5 0, (2)

or after transposing,where y 5 a and y 5 b are the two boundaries of the
problem domain. Without loss of generality, assume that
a , b. The constant coefficient matrices A and B are of Dz* 5 2GTz*. (5)
order n 3 n with the sum of their ranks equal to n. Assume
that the unknown eigenvalue is P. Our interest is in the Then, it follows that
rates of change of P with respect to ci , i.e., ­P/­ci ,
­2P/­ci­cj , etc. We are particularly interested in the values
of P and ci at which P is an extremum with respect to ci , z*TzUb

a

5 0. (6)
i.e., the values at which

The boundary conditions for the adjoint problem are for-­P
­ci

5 0. (3) mulated by using Eq. (2) in Eq. (6) and requiring the
resulting terms to vanish independently. Next, we differen-
tiate Eqs. (1) and (2) with respect to ci . The results isThe usual method of computing the extremum value of

P with respect to c1 , for example, consists of calculating
numerically the rate of change of P with respect to c1 , i.e.,

D S­z

­ci
D5 G

­z

­ci
1

­G
­ci

z (7)­P/­c1 . This calculation is usually performed using finite
differences. Then iteration is performed to drive ­P/­c1 to
zero at which point P is an extremum point. The iteration A

­z

­ci
(a) 1 B

­z

­ci
(b) 1

­A
­ci

z(a) 1
­B
­ci

z(b) 5 0. (8)
requires the second rate of change of P with respect to c1 ,
i.e., ­2P/­c2

1 which is also calculated numerically using finite
differences. This method has a low order of accuracy and By specifying ci and solving the eigenvalue problem gov-

erned by Eqs. (1) and (2), we obtain P and z. If we substi-it is time consuming when compared to the method that
we present in this paper. Masad and Malik [3] presented tute P and z into Eqs. (7) and (8), we obtain an inhomoge-

neous problem. However, the corresponding homoge-a method for computing the extremum points of variable-
coefficients differential eigenvalue problems and applied neous problem has the same form as Eqs. (1) and (2),

except that z in Eqs. (1) and (2) is replaced by ­z/­ci init to compute the maximum growth rate of hydrodynamic
instability waves. The method of Masad and Malik [3] is the homogeneous parts of Eqs. (7) and (8). Because Eqs.

(1) and (2) form an eigenvalue problem (z is unique withina ‘‘one-shot’’ method which augments the original and
differentiated systems by trivial equations for the rates of an arbitrary multiplicative constant), then z is a solution

for the homogeneous parts of Eqs. (7) and (8). In addition,change of free parameters and solves the resulting nonlin-
ear system, subject to the original and differentiated z* is also an adjoint to the homogeneous parts of Eqs. (7)

and (8). Therefore (see Eq. (4)),boundary conditions as well as the associated normaliza-
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values into Eqs. (7) and (8) and solve for ­z/­ci . ThenEb

a
z*T FD S­z

­ci
D2 G

­z

­ci
G dy 5 0. (9) substituting P, ci , ­P/­ci , z, and ­z/­ci into Eqs. (12) and

(13), we obtain an inhomogeneous problem. However, the
corresponding homogeneous problem has the same formNext, we multiply the inhomogeneous equation (7) by
as Eqs. (1) and (2), except that z in Eqs. (1) and (2) is

z*T and integrate over the domain of the problem from
replaced by ­2z/­ci­cj in the homogeneous parts of Eqs.y 5 a to y 5 b. We use the boundary conditions (2) and
(12) and (13). Therefore, as argued earlier, z is a solutionthose of the adjoint problem and then use the identity (9)
for the homogeneous parts of Eqs. (12) and (13) and z*to obtain
is an adjoint to it. The resulting solvability condition is

z*T(b)
­z

­ci
(b) 2 z*T(a)

­z

­ci
(a) 2 Eb

a
z*T ­G

­ci
z dy 5 0. (10) z*T(b)

­2z

­ci­cj
(b) 2 z*T(a)

­2z

­ci­cj
(a)

(14)
Equations (10) are the solvability conditions for the inho-

2 Eb

a
z*T S­G

­cj

­z

­ci
1

­G
­ci

­z

­cj
1

­2G
­ci­cj

zD dy 5 0.mogeneous system that is governed by Eqs. (7) and (8);
Eqs. (10) can be solved for ­P/­ci as

Equations (14) contain ­2P/­ci­cj that can be solved analyt-
ically. Higher order derivatives of P with respect to cj can­P

­ci
5 ti , (11)

be analyzed and calculated by similar extensions.
By having the first and higher derivatives of P with

respect to ci , it also becomes possible to calculate P duewhere ti are the corresponding constants which depend,
to variations in ci using a Taylor series expansion aroundin general, on P, ci , z, and z*. Equations (11) can be used
a basic set of free parameters ci0 . For example, in theto calculate ­P/­ci . Furthermore, the extremum value of
presence of one perturbed free parameter c1 around c10P over all values of ci is characterized by ­P/­ci 5 0. To
we obtaincalculate this extremum value we assume initial guesses

for ci , then Eqs. (1) and (2) are solved to obtain P and z.
Then P is used in the adjoint problem (which has the same P(c1) 5 P(c10) 1

­P
­c1
U

c15c10

(c1 2 c10)

(15)
eigenvalue P) and z* is calculated. Next, ti (the right-hand
side of (11)) are evaluated. If ti are different from zero
(which means that ­P/­ci are different from zero) then the

1
1
2

­2P
­c2

1
U

c15c10

(c1 2 c10)2 1 ? ? ?values of ci are updated according to the errors ti , Eqs. (1)
and (2) are resolved, the adjoint problem is also resolved, ti

are reevaluated, and so on until ti are driven to zero within
3. APPLICATIONSthe prescribed tolerances. When ti are zero, so are ­P/­ci ,

and ci have values that result in P being a maximum or
3.1. Analysis and Computation of the Most-Amplifieda minimum.

Inviscid Instability Wave in CompressibleIn the iteration scheme which aims at driving ti (i.e.,
Two-Dimensional Boundary Layers­P/­ci) to zero and, instead of calculating the first deriva-

tive of ti with respect to cj (i.e., ­ti/­cj or ­2P/­ci­cj) using The quasi-parallel inviscid instability equations of the
finite differences, we differentiate Eqs. (7) and (8) with compressible disturbed flow have various forms [1]. In this
respect to cj , the result is analysis, we use the form given by

Dz1 5
iarmDUm

G
z1 2 Sa2 1 b2

G
1

M2
yG

rm
D z2 (16)D S ­2z

­ci­cj
D5 G

­2z

­ci­cj
1

­G
­cj

­z

­ci
1

­G
­ci

­z

­cj
1

­2G
­ci­cj

z

Dz2 5 2Gz1 , (17)
A

­2z

­ci­cj
(a) 1 B

­2

­ci­cj
(b) 1

­A
­ci

­z

­cj
(a) (12)

where D 5 d/dy, rm is the meanflow density, Um is the
meanflow streamwise velocity, and My is the freestream

1
­B
­ci

­z

­cj
(b) 1

­A
­cj

­z

­ci
(a) 1

­B
­cj

­z

­ci
(b)

Mach number. We also have

y 5 z1ei(ax1bz2gt) 1 cc (18a)1
­2A

­ci­cj
z(a) 1

­2B
­ci­cj

z(b) 5 0. (13)
p 5 z2ei(ax1bz2gt) 1 cc (18b)

G 5 2irm(g 2 aUm). (19)By knowing P, ci , ­P/­ci , z, and z* we can substitute these
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The boundary conditions at the wall are ­a
­b

5
t1

t2
, (30)

z1 5 0 at y 5 0 (20)
where

and in the free-stream, the boundedness of the disturbance
requires that

t1 5 2
1
t

b
G 2

e
z*2 (y)z2(y) 1 2b Ey

0

z*1 z2

G
dy (31a)

z1 2 t1/2z2 5 0, (21)
and

where

t2 5 2
iz*2 (y)z2(y)

tG 2
e

Sa2 1 b2

Ge
1 iaD

t 5
a2 1 b2

G 2
e

1 M2
y (22)

1 Ey

0
FrmDUm

G
Si 1 a

rmUm

G
D z*1 z1 2 irmUmz*2 z1 (31b)Ge 5 2i(g 2 a). (23)

If we compare Eqs. (16) and (17) with Eq. (1), then we 1 H2
2a
G

1
irmUm

G 2 (a2 1 b2) 2 iM2
yUmJ z*1 z2G dy.

see that

We calculated the values of ­a/­b using Eq. (30) and using
central finite differencing through

G 5 3
iarmDUm

G
2

a2 1 b2

G
2

M2
yG

rm

2G 0 4. (24)

S­a
­bDi

5
ai11 2 ai51

bi11 2 bi21
5

ai11 2 ai21

2 Db
. (32)

We have a 5 0 and b 5 y. The adjoint problem is gov-
The step Db is taken to be 0.002. The calculations are forerned by
second-mode waves at My 5 5, a Prandtl number Pr 5
0.72, and a freestream static temperature T*y 5 508 K. The

Dz* 5 2GTz*, (25) two-point boundary value problem governed by Eqs. (16)
and (17) and the boundary conditions (20) and (21) and

where its adjoint problem are solved numerically using a second-
order accurate finite-differences scheme with deferred cor-
rection [6]. The iteration on the eigenvalue is performedz* 5 uz*1 z*2 uT (26)
using a Newton–Raphson scheme. Note that the adjoint
problem has the same eigenvalue of the original problem

and the boundary conditions and no iteration on the eigenvalue is needed in the adjoint
problem. A comparison of ­a/­b calculated from Eqs. (30)
and (32) is shown in Table I. The values of ­a/­b calculatedz*2 5 0 at y 5 0 (27)
using the present approach compare well with the values
calculated using central differencing and the discrepancyz*1 1 t21/2z*2 5 0. (28)
is due to the limited order of accuracy of the central differ-
encing calculation of the derivative. While the central dif-Applying the solvability condition (10) with P 5 a and
ferencing calculation requires solving the two-point bound-ci 5 b yields
ary value problem twice with iteration on the eigenvalue
each time, the present approach requires solving the prob-
lem only once with iteration on the eigenvalue and solving2t21/2 ­t1/2

­b
z*2 (y)z2(y)

(29)
the adjoint problem once with no iteration on the eigen-
value. The computational requirements of the present
method of evaluating the derivative are almost half those2 Ey

0
Sz*1

­G11

­b
z1 1 z*2

­G21

­b
z1 1 z*1

­G12

­b
z2D dy 5 0.

of the central finite differencing with the present method
being more accurate. In an optimization code, where the
derivatives needs to calculated for a large number of times,It follows from Eq. (29) that
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TABLE I

Comparison of the Values of ­a/­b Calculated Using the Present Approach and the
Central Finite Differencing Approach

Equation (30) Equation (32)

b ar ai ­ar/­b ­ai/­b ­ar/­b ­ai/­b

0.016 0.1874 20.006229 20.01028 0.005942 20.01000 0.005950
0.036 0.1870 20.006027 20.02381 0.01464 20.02250 0.01465
0.056 0.1864 20.005619 20.03906 0.02708 20.04000 0.02712
0.076 0.1854 20.004881 20.05792 0.04898 20.06000 0.04912

the present approach offers considerable savings in central
t3 5

iz*2 (y)z2(y)
tG3

e
(a2 1 b2)processing unit (CPU) time and user’s time.

The quantity ­a/­b is

1 Ey

0 F2ar2
mDUm

G 2 z*1 z1 1 irmz*2 z1 (36)
­a
­b

5
­ar

­b
1 i

­ai

­b
5 Real St1

t2
D1 Imag St1

t2
D. (33)

1 iz*1 SM2
y 2 irm

a2 1 b2

G2 D z2G dy.

Therefore, to compute the maximum value of 2ai over
all values of b for which ­ai/­b 5 0, we set the

Note from (31a) and (35) that b 5 0 results in ­g/­b 5condition
0. The corresponding gi is a maximum for second-mode
waves but it is a minimum for first-mode waves. Equation
(35) can be used to calculate the maximum temporalImag St1

t2
D5 0. (34)

growth rate at which ­gi/­b 5 0. The group velocity com-
ponents can be calculated from ­gr/­b and ­gr/­a. The
quantity ­g/­a can be calculated fromThe iteration on b can be performed efficiently in the

present method by using the expression ­2a/­b2 which
follows from applying Eq. (14) with P 5 a and ci 5 ­g

­a
5

h1

h2
(37)cj 5 b. Satisfying condition (34) ensures that ai is a

maximum or a minimum over all values of b. Note from
(31a) that b 5 0 results in ­a/­b 5 0. The corresponding

which follows from
2ai is a maximum for second-mode waves but it is a
minimum for first-mode waves. Our predictions of the
maximum growth rate using the present approach are 2t21/2 ­t1/2

­a
z*2 (y)z2(y)

(38)
in full agreement (within the prescribed tolerance) with
the predictions of the method of Masad and Malik [3].
The maximum value of 2ai over all values of b and 2 Ey

0
Sz*1

­G11

­a
z1 1 z*2

­G21

­a
z1 1 z*1

­G12

­a
z2D dy 5 0.

g can be computed by implementing simultaneously
condition (34) and the condition ­ai/­g 5 0, ­ai/­g is

The maximum value of gi over all values of a can bethe imaginary part of the expression for ­a/­g which
calculated by implementing the condition ­gi/­a 5 0.can be derived.

For temporal stability, a and b are real and g is complex.
Application of the solvability condition (10) with P 5 g 3.2. Analysis and Computation of the Most-Amplified
and ci 5 b yields Viscous Instability Wave in Three-Dimensional

Incompresible Boundary Layers

We consider the viscous quasi-parallel instability of in-­g
­b

5
t1

t3
, (35)

compressible three-dimensional boundary layer with the
body-curvature effects neglected. This instability is gov-
erned by the Orr–Sommerfeld equation,where
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d4y

dy4 1 f1
d2y

dy2 1 f2y 5 0, (39) x2 5 Ey

0
[z*4 z1h4a(a2 1 b2) 1 2iaR(aUm 1 bWm 2 g)

1 iRUm(a2 1 b2) 1 iRU0mjwhere

1 z*4 z3h24a 2 iRUmj] dy. (44b)
f1 5 22(a2 1 b2) 2 iR(aUm 1 bWm 2 g) (40a)

For two-dimensional flow x1 reduces tof2 5 (a2 1 b2)2 1 iR(aUm 1 bWm 2 g)(a2 1 b2)

1 iR(aU0m 1 bW0m). (40b)
x1 5 2b Ey

0
[z*4 z1h4(a2

(45)
Um and Wm are the chordwise and spanwise mean-flow 1 b2) 1 2iR(aUm 2 g)j 2 4z*4 z3] dy.
velocity components. The boundary conditions require the
vanishing of y and dy/dy at y 5 0 and as y R y. For spatial

It is clear from Eq. (45) that b 5 0 results in ­a/­b 5 0.
instability of flow over an infinite body, g and b are real

Therefore, b 5 0 corresponds to an extremum growth rate
and a is complex. If we let

in two-dimensional incompressible boundary layers. This
extremum growth rate is a maximum and, therefore, the

z1 5 y, z2 5 y9, z3 5 y0, z4 5 y-, most amplified spatial instability wave in two-dimensional
incompressible boundary layer is two-dimensional.

then the resulting first-order system has the form (1), Squire’s theorem also provides a proof of this result. Note
where that for three-dimensional boundary layer with b 5 0, x1

reduces to
z 5 hz1 , z2 , z3 , z4jT (41)

x1 5 2iR Ey

0
[z*4 z1(a2Wm 1 W0m) 2 z*4 z3Wm] dy (46)

and

which is in general different from zero and, therefore,
the most amplified spatial instability wave in three-
dimensional incompressible boundary layer is generally

G 5 3
0 1 0 0

0 0 1 0

0 0 0 1

2f2 0 2f1 0
4. (42) oblique. The maximum growth rate is characterized by

­ai/­b 5 0, or

Imag Sx1

x2
D5 0. (47)

Applying the solvability condition (10) with P 5 a and
ci 5 b results in

This condition can be used to determine the value of b
which gives the maximum growth rate 2ai over all valuesEy

0
z*4 S­f2

­b
z1 1

­f1

­b
z3D dy 5 0 of b.

For temporal stability, application of the condition (10)
with P 5 g and ci 5 b results in

or

­g
­b

5
x1

x3
, (48)

­a
­b

5
x1

x2
, (43)

where
where

x3 5 Ey

0
[2iR(a2 1 b2)z*4 z1 1 iRz*4 z3] dy (49)

x1 5 2 Ey

0
[z*4 z1h4b(a2 1 b2) 1 2ibR(aUm 1 bWm 2 g)

and the same above theoretical results can be obtained by
considering condition (48). Condition (48) can be used to1 iRWm(a2 1 b2) 1 iRW0mj
calculate the maximum temporal growth rate at which

1 z*4 z3h24b 2 iRWmj] dy (44a) ­gi/­b 5 0. The group velocity components can be calcu-
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lated from ­gr/­b and ­gr/­a. The quantity ­g/­a can be For spatial stability, application of condition (10) with
P 5 a and ci 5 R results incalculated from

­a
­R

5
L1

L2
, (56)

­g
­a

5
h3

h4
(50)

wherewhich follows from

L1 5 2Ey

0
[z*4 z1hi(aUm 1 bWm 2 g)(a2 1 b2)Ey

0
z*4 S­f2

­a
z1 1

­f1

­a
z3D dy 5 0, (51)

1 i(aU0m 1 bW0m)j
which in turn follows from application of condition (10)

2 z*4 z3i(aUm 1 bWm 2 g)] dy (57a)with P 5 g and ci 5 a. The maximum value of gi over all
values of a can be calculated by implementing the condi-

L2 5 Ey

0
[z*4 z1h4a(a2 1 b2) 1 3iRa2Um 1 iRU0mjtion ­gi/­a 5 0.

For spatial stability, the solvability condition (10) with
2 z*4 z3(4a 1 iRUm)] dy. (57b)P 5 a and ci 5 g results in

It is clear from condition (56) that as R approaches infinity,Ey

0
z*4 S­f2

­g
z1 1

­f1

­g
z3D5 0 (52) ­a/­R approaches zero. This means that the inviscid

growth rate is an extremum point. This extremum is a
minimum for the incompressible flow under consideration.

or Condition (56) can be used to calculate the maximum spa-
tial growth rate over all values of R at which ­ai/­R 5 0.
The same theoretical results can be reached by considering­a

­g
5

s1

s2
, (53)

­g/­R within a temporal stability theory. The condition
­gi/­R 5 0 can be used to calculate the maximum temporal
growth rate over all values of R.where

It can be shown that for compressible three-dimensional
flow the quantity ­a/­R is given by

s1 5 Ey

0
iRz*4 [(a2 1 b2)z1 2 z3] dy (54a)

­a
­R

5
b1 1 (b2/R2)

a1R 1 a2 1 (a3/R)
, (58)s2 5 Ey

0
[z*4 z1h(a2 1 b2)(4a 1 iRUm)

1 2iaR(aUm 1 bWm 2 g) 1 iRU0mj where b1 , b2 , a1 , a2 , and a3 are O(1) and independent of
R. Therefore, as R approaches infinity, ­a/­R approaches

2 z*4 z3h4a 1 iRUmj] dy. (54b) zero. The extremum point in the inviscid limit switches
from being a minimum at low speeds to being a maximum

It is clear from Eqs. (53) and (54) that for g 5 0, at high speeds. The same results can be reached by consid-
­a/­g is in general different from zero. Therefore, the most ering ­g/­R within a temporal stability theory. The quan-
amplified disturbance in the three-dimensional boundary tity ­g/­R has the same form as the right-hand side of
layer, which supports both stationary (zero-frequency) and Eq. (58).
traveling (nonzero frequency) disturbances, is generally a For spatial instability of fully three-dimensional bound-
traveling disturbance. The maximum growth rate is charac- ary layer a and b are complex, while g is real. Using
terized by ­ai/­g 5 0, or the present approach it is possible to derive analytical

expression for ­ar/­br . The expression can be used to im-
plement the envelope method.

Imag Ss1

s2
D5 0. (55)

3.3. Laminar Flow Control and Natural Laminar
Flow Optimization

This condition can be used to determine the value of g
which gives the maximum growth rate 2ai over all values It is possible to use the present method to compute the

rate of change of growth rate of instability wave with re-of g.
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spect to the suction velocity or surface temperature. For condition to compute a correction to the eigenvalue due
to perturbation in the mean flow parameters. The methodexample, for the stability of three-dimensional flow gov-

erned by Eq. (39) application of Eq. (10) with P 5 a and of Masad and Malik [7] can be used as a block in a suction
or cooling optimization scheme. The application of theci being the surface suction velocity yw results in
present method in this paper is different than the method
of Masad and Malik [7].Ey

0
z*4 S­f2

­yw
z1 1

­f1

­yw
z3D dy 5 0 (59)

3.4. Computation of the Eigenvalue around
Base Parameters

or
It is possible to use the computed rates of change of the

spatial eigenvalue a with respect to parameters such as­a
­yw

5
q1

q2
, (60) the spanwise wavenumber b, frequency g, or Reynolds

number R to calculate the value of a around some values
of b, g, or R using a Tyalor series expansion. For example,where
to calculate a around some Reynolds number R0 we
have

q1 5 Ey

0
Hz*4 z3iR Sa

­Um

­yw
1 b

­Wm

­yw
D

a(R) 5 Oy
j50

1
j!

­ja
­R jU

R5R0

(R 2 R0) j. (63)

2 z*4 z1 FiR S­U0m

­yw
1

­W0m

­yw
D

The integrated value of a with respect to R is
1 iR(a2 1 b2) Sa

­Um

­yw
1 b

­Wm

­yw
DGJ dy (61a)

ER

R5R1

a dR 5 Oy
j50

1
( j 1 1)!

­( j)a
­R( j)U

R5R0 (64)
q2 5 Ey

0
hz*4 z1[4a(a2 1 b2) 1 2aiR(aUm 1 bwm 2 g)

3 h(R 2 R0)j11 2 (R 2 R0)j11j.1 iR(a2 1 b2)Um 1 iRU0m]

The N factor is1 z*4 z3[24a 2 iRUm]j dy. (61b)

The second and higher derivatives ­2a/­y 2
w , ­3a/­y 3

w , etc.
N 5 22 Imag SER

R5R1

a dRD. (65)can be calculated as explained in Section 2. Then, the
growth rate s 5 2ai at any suction velocity yw around a
basic suction velocity yw0 can be calculated from the Taylor Expansions similar to expansion (63) can be used to
series expansion, calculate a(b) and a(g) around some values of b0

and g0 .
Masad [8] presented a method for computing the insta-

s(yw) 5 s(yw0) 1
­s

­yw
U

yw5yw0

(yw 2 yw0)

(62)
bility eigenvalue subject to perturbation in instability pa-
rameters such as b and g without resolving the instability
eigenvalue problem. The above-presented method is dif-

1
1
2

­2s

­y 2
w
U

yw5yw0

(yw 2 yw0)2 1 ? ? ? . ferent than the method of Masad.

5. SUMMARY
The present method can also be applied to compute the
rates of change of the growth rate with respect to the A method for analyzing and computing the derivatives

and extremum points of variable-coefficients differentialaerodynamic shape then it can use these sensitivity deriva-
tives to optimize the shape of aerodynamic configurations eigenvalue problems is presented. The method utilizes the

orthogonality of the adjoint eigenfunctions to the differen-in order to delay transition and to achieve large regions
of natural laminar flow. tiated problem to formulate a solvability condition. Theo-

retical results on the most-amplified instability waves inMasad and Malik [7] presented a method for computing
the instability eigenvalue subject to perturbations in mean two- and three-dimensional boundary layers are presented.

The method can be used for efficient analysis and computa-flow parameters without resolving the instability eigen-
value problem. The method consists of using a solvability tion of the maximum growth rate of instability waves, as
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